Thursday 19 April 2018

R sistema de comércio de idiomas


Easylanguage grátis.


Abaixo está uma lista de artigos que contêm código fonte gratuito EasyLanguage para ajudá-lo a descobrir novas maneiras de criar sistemas comerciais rentáveis.


Código de Estratégia.


Esses artigos contêm idéias de negociação que podem ser as sementes de um ótimo sistema comercial. Estes não são sistemas de negociação completos como estão. São exemplos fantásticos de margens potenciais do mercado que podem dar início ao desenvolvimento de seu próprio sistema.


Desenvolvimento de sistema.


Código do indicador.


Copyright © 2017 da Capital Evolution LLC. - Projetado por temas Thrive | Powered by WordPress.


Por favor faça login novamente. A página de login será aberta em uma nova janela. Depois de efetuar o login, você pode fechá-lo e retornar a esta página.


R Linguagem de programação.


Use R para construir seus sistemas de negociação.


A negociação de câmbio em margem comporta um alto nível de risco e pode não ser adequada para todos os investidores. O alto grau de alavancagem pode funcionar contra você, bem como para você. Antes de decidir investir em divisas, você deve considerar cuidadosamente seus objetivos de investimento, nível de experiência e apetite de risco. Existe a possibilidade de que você possa sustentar uma perda de algum ou todo seu investimento inicial e, portanto, você não deve investir dinheiro que não pode perder. Você deve estar ciente de todos os riscos associados à negociação cambial e procurar o aconselhamento de um consultor financeiro independente se tiver dúvidas.


QuantStart.


O portal QuantCademy QuantStademy da QuantStart fornece recursos educacionais detalhados para aprender comércio sistemático e uma forte comunidade de comerciantes algorítmicos de sucesso para ajudá-lo.


Artigos Mais Recentes.


Apenas iniciando o comércio quantitativo?


3 razões para se inscrever para a lista de e-mails QuantStart:


1. Quant Trading Lessons.


Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!


2. Todo o conteúdo mais recente.


Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.


Real, dicas de negociação viáveis, sem tonturas.


QuantStart.


Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.


Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.


Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.


Por Michael Halls-Moore em 26 de julho de 2018.


Uma das perguntas mais freqüentes que recebo no QS mailbag é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não existe um "melhor" idioma. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreve os componentes necessários de uma arquitetura de sistema de negociação algorítmica e como as decisões relativas à implementação afetam a escolha do idioma.


Em primeiro lugar, serão considerados os principais componentes de um sistema de negociação algorítmico, como ferramentas de pesquisa, otimizador de portfólio, gerenciador de riscos e motor de execução. Posteriormente, serão examinadas diferentes estratégias de negociação e como elas afetam o design do sistema. Em particular, a freqüência de negociação e o provável volume de negociação serão discutidos.


Uma vez que a estratégia de negociação foi selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o (s) sistema (s) operacional (is) e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, deve-se ter em conta o desempenho, tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.


Qual é o sistema de comércio tentando fazer?


Antes de decidir sobre o "melhor" idioma com o qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema comercial pode ser dividido em duas categorias: Pesquisa e geração de sinal.


A pesquisa está preocupada com a avaliação de um desempenho de estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação em relação aos dados anteriores do mercado é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade da CPU e a concorrência são muitas vezes os fatores limitantes na otimização da velocidade de execução da pesquisa.


A geração de sinal está preocupada com a geração de um conjunto de sinais de negociação a partir de um algoritmo e envio de ordens para o mercado, geralmente através de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. As questões de E / S, como a largura de banda da rede e a latência, muitas vezes são fatores limitantes na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bastante diferente.


Tipo, Frequência e Volume de Estratégia.


O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados comercializados, a conectividade com os fornecedores de dados externos, a freqüência e o volume da estratégia, o trade-off entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customizado servidores, GPUs ou FPGAs que possam ser necessários.


As opções de tecnologia para uma estratégia de ações de baixa freqüência dos EUA serão muito diferentes das de uma negociação de estratégias de arbitragem estatística de alta freqüência no mercado de futuros. Antes da escolha do idioma, muitos fornecedores de dados devem ser avaliados que pertencem à estratégia em questão.


Será necessário considerar a conectividade com o fornecedor, a estrutura de todas as APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor que está offline. Também é aconselhável possuir acesso rápido a vários fornecedores! Vários instrumentos têm todos os seus peculiaridades de armazenamento, exemplos dos quais incluem símbolos de ticker múltiplos para ações e datas de vencimento para futuros (sem mencionar nenhum dado OTC específico). Isso precisa ser incorporado ao design da plataforma.


A frequência da estratégia provavelmente será um dos maiores drivers de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar, exigem uma consideração significativa em relação ao desempenho.


Uma estratégia que excede as barras segundo (isto é, dados de marca) leva a um design orientado a desempenho como o principal requisito. Para estratégias de alta freqüência, uma quantidade substancial de dados do mercado precisará ser armazenada e avaliada. Software como HDF5 ou kdb + é comumente usado para essas funções.


Para processar os extensos volumes de dados necessários para aplicações HFT, um sistema de backtester e execução extensivamente otimizado deve ser usado. C / C ++ (possivelmente com algum montador) é provável para o candidato a linguagem mais forte. As estratégias de ultra-alta freqüência certamente exigirão hardware personalizado, como FPGAs, co-localização de troca e ajuste de interface de rede / kernal.


Sistemas de pesquisa.


Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e script automatizado. O primeiro geralmente ocorre dentro de um IDE, como Visual Studio, MatLab ou R Studio. O último envolve cálculos numéricos extensos em vários parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente direto para testar código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetros.


Os IDE típicos neste espaço incluem Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais diretas de toda a pilha do projeto (via o banco de dados ORM, LINQ); MatLab, que é projetado para uma grande variedade de álgebras lineares numéricas e operações vetoriais, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE de pleno direito; Eclipse IDE para Linux Java e C ++; e IDE semi-proprietários, como Enthought Canopy para Python, que incluem bibliotecas de análise de dados, como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).


Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A principal consideração nesta fase é a velocidade de execução. Um idioma compilado (como C ++) geralmente é útil se as dimensões do parâmetro backtest forem grandes. Lembre-se de que é necessário desconfiar de tais sistemas se for esse o caso!


Idiomas interpretados, como Python, muitas vezes fazem uso de bibliotecas de alto desempenho, como NumPy / pandas para a etapa de teste, para manter um grau razoável de competitividade com equivalentes compilados. Em última análise, o idioma escolhido para o backtesting será determinado por necessidades algorítmicas específicas, bem como o intervalo de bibliotecas disponíveis no idioma (mais sobre isso abaixo). No entanto, o idioma utilizado para o backtester e os ambientes de pesquisa podem ser completamente independentes dos usados ​​na construção de portfólio, gerenciamento de riscos e componentes de execução, como será visto.


Construção de carteiras e gerenciamento de riscos.


A construção do portfólio e os componentes de gerenciamento de riscos são muitas vezes ignorados pelos comerciantes algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não só tentam aliviar o número de apostas "arriscadas", mas também minimizam o churn dos próprios negócios, reduzindo os custos de transação.


Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É direto criar um estável de estratégias, pois o mecanismo de construção do portfólio e o gerenciador de riscos podem ser facilmente modificados para lidar com múltiplos sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de comércio algorítmico.


O trabalho do sistema de construção de carteiras é levar um conjunto de trades desejados e produzir o conjunto de negócios reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.


A construção do portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração da matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação de álgebra linear numérica disponível. As bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. Python utiliza NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca de matriz compilada (e bem otimizada!) Para levar a cabo esta etapa, de modo a não engarrafar o sistema de negociação.


O gerenciamento de riscos é outra parte extremamente importante de um sistema de comércio algorítmico. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, contraparte padrão, interrupções do servidor, eventos de "cisnes negros" e erros não detectados no código comercial, para nomear alguns.


Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e a correlação entre as classes de ativos e seus efeitos (s) subsequentes sobre o capital de negociação. Muitas vezes isso se reduz a um conjunto de cálculos estatísticos, como Monte Carlo "testes de estresse". Isso é muito semelhante às necessidades computacionais de um mecanismo de preços de derivativos e, como tal, será vinculado à CPU. Essas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".


Sistemas de Execução.


O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de portfólio e gerenciamento de riscos e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora, como Interactive Brokers. As considerações primárias ao decidir sobre um idioma incluem a qualidade da API, a disponibilidade do idioma para uma API, a freqüência de execução e o deslizamento antecipado.


A "qualidade" da API refere-se ao quão bem documentado é, qual o tipo de desempenho que ele fornece, se ele precisa de um software autônomo para ser acessado ou se um gateway pode ser estabelecido de forma sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa ser executada em um ambiente GUI para acessar sua API. Uma vez, tive que instalar uma edição do Desktop Ubuntu em um servidor de nuvem da Amazon para acessar os corretores interativos de forma remota, apenas por esse motivo!


A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, é de responsabilidade da comunidade desenvolver wrappers específicos do idioma para C #, Python, R, Excel e MatLab. Note-se que, com cada plugin adicional utilizado (especialmente os wrappers da API), há possibilidades de insetos no sistema. Sempre teste plugins desse tipo e assegure-se de que sejam ativamente mantidos. Um indicador valioso é ver quantas novas atualizações de uma base de código foram feitas nos últimos meses.


A frequência de execução é de extrema importância no algoritmo de execução. Note que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. Slippage será incorrido através de um sistema de execução mal executado e isso terá um impacto dramático sobre a rentabilidade.


Os idiomas estaticamente digitados (veja abaixo), como C ++ / Java, geralmente são ótimos para execução, mas há um trade-off em tempo de desenvolvimento, testes e facilidade de manutenção. Idiomas dinamicamente digitados, como Python e Perl, geralmente são geralmente "rápidos o suficiente". Certifique-se sempre de que os componentes foram projetados de forma modular (veja abaixo) para que eles possam ser "trocados" à medida que o sistema se reduz.


Processo de Planejamento e Desenvolvimento Arquitetônico.


Os componentes de um sistema de comércio, seus requisitos de freqüência e volume foram discutidos acima, mas a infraestrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciante de varejo ou que trabalham em um fundo pequeno provavelmente estarão "vestindo muitos chapéus". Será necessário cobrir o modelo alfa, o gerenciamento de riscos e os parâmetros de execução, bem como a implementação final do sistema. Antes de aprofundar linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.


Separação de preocupações.


Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema comercial. No desenvolvimento de software, isso significa essencialmente como dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.


Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que ajudem o desempenho, confiabilidade ou manutenção, sem modificar nenhum código de dependência externo. Esta é a "melhor prática" para esses sistemas. Para estratégias em frequências mais baixas, tais práticas são aconselhadas. Para a negociação de alta freqüência, o livro de regras pode ser ignorado à custa de ajustar o sistema para ainda mais desempenho. Um sistema mais acoplado pode ser desejável.


Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ótima é garantir que haja componentes separados para as entradas de dados de mercado históricos e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros de estratégia, construção de portfólio, gerenciamento de riscos e sistemas de execução automatizada.


Por exemplo, se o armazenamento de dados em uso estiver atualmente com desempenho inferior, mesmo em níveis significativos de otimização, ele pode ser trocado com reescrituras mínimas para a ingesta de dados ou API de acesso a dados. Até o ponto em que o backtester e os componentes subsequentes estão em causa, não há diferença.


Outro benefício de componentes separados é que permite que uma variedade de linguagens de programação sejam usadas no sistema geral. Não é necessário restringir a um único idioma se o método de comunicação dos componentes for independente de linguagem. Este será o caso se estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.


Como um exemplo concreto, considere o caso de um sistema de backtesting que está sendo escrito em C ++ para o desempenho do "crunching", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.


Considerações sobre o desempenho.


O desempenho é uma consideração significativa para a maioria das estratégias comerciais. Para estratégias de maior freqüência, é o fator mais importante. O "Desempenho" cobre uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto este artigo apenas arranhará a superfície de cada tópico. A escolha da arquitetura e da linguagem agora será discutida em termos de seus efeitos sobre o desempenho.


A sabedoria prevalecente, como afirmou Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Este é quase sempre o caso - exceto quando se forma um algoritmo de negociação de alta freqüência! Para aqueles que estão interessados ​​em estratégias de baixa freqüência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os estrangulamentos começam a aparecer.


Ferramentas de perfil são usadas para determinar onde surgem os estrangulamentos. Perfis podem ser feitos para todos os fatores listados acima, em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e de idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da linguagem agora será discutida no contexto da performance.


C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte do padrão ou externo) para estrutura básica de dados e trabalho algorítmico. C ++ é fornecido com a Biblioteca de modelos padrão, enquanto o Python contém NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.


Uma exceção é se uma arquitetura de hardware altamente personalizada é necessária e um algoritmo está fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça o tempo que pode ser melhor gasto no desenvolvimento e otimização de outras partes da infra-estrutura de negociação. O tempo de desenvolvimento é extremamente precioso especialmente no contexto dos únicos desenvolvedores.


A latência é muitas vezes uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão localizadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (sistema operacional, latência de mensagens do kernal), sinais comerciais enviados (latência NIC) e pedidos processados ​​(latência interna dos sistemas de troca).


Para operações de maior freqüência, é necessário familiarizar-se intimamente com a otimização do kernal, além de otimizar a transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT é desejado então esteja ciente da profundidade do conhecimento necessário!


O cache é muito útil no conjunto de ferramentas de um desenvolvedor de negócios quantitativo. O armazenamento em cache refere-se ao conceito de armazenar dados freqüentemente acessados ​​de uma maneira que permita um acesso de alto desempenho, em detrimento do potencial estancamento dos dados. Um caso de uso comum ocorre no desenvolvimento da web ao tirar dados de um banco de dados relacional com respaldo de disco e colocá-lo na memória. Quaisquer pedidos subseqüentes para os dados não precisam "acessar o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.


Para situações de negociação, o cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégia pode ser armazenado em um cache até ser reequilibrado, de modo que a lista não precisa ser regenerada em cada ciclo do algoritmo de negociação. Essa regeneração provavelmente será uma alta CPU ou operação de E / S de disco.


No entanto, o armazenamento em cache não está sem os seus próprios problemas. A regeneração de dados de cache de uma só vez, devido à natureza volátil do armazenamento de cache, pode colocar uma demanda significativa na infraestrutura. Outra questão é o empilhamento de cães, onde múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.


A alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de maior desempenho comercial sejam conscientes de como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, todos executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos ficam fora do escopo.


A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz erros e ajuda a legibilidade. No entanto, muitas vezes é sub óptimo para certas estratégias de negociação de alta freqüência. A coleta de lixo personalizada é muitas vezes desejada para esses casos. Em Java, por exemplo, ao ajustar a configuração do coletor de lixo e do heap, é possível obter alto desempenho para as estratégias de HFT.


C ++ não fornece um coletor de lixo nativo e, portanto, é necessário lidar com toda a alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente propenso a erros (potencialmente levando a ponteiros pendurados), é extremamente útil ter um controle fino de como os objetos aparecem no heap para determinadas aplicações. Ao escolher um idioma, certifique-se de estudar como funciona o coletor de lixo e se ele pode ser modificado para otimizar um caso de uso específico.


Muitas operações em sistemas de negociação algorítmica são favoráveis ​​à paralelização. Isso se refere ao conceito de realização de múltiplas operações programáticas ao mesmo tempo, ou seja, em "paralelo". Os algoritmos denominados "embarassingly paralelos" incluem etapas que podem ser computadas totalmente independentemente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarazosa paralelos, pois cada sorteio aleatório e subsequente operação do caminho podem ser computados sem o conhecimento de outros caminhos.


Outros algoritmos são apenas parcialmente paralelizados. As simulações de dinâmica de fluidos são um exemplo, onde o domínio da computação pode ser subdividido, mas, em última instância, esses domínios devem se comunicar entre si e, portanto, as operações são parcialmente seqüenciais. Os algoritmos paralisáveis ​​estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados em $ N $ (por exemplo, em um núcleo ou fio de CPU).


A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades do clock do processador estagnaram, já que os processadores mais novos contêm muitos núcleos com os quais realizar cálculos paralelos. O aumento do hardware de gráficos de consumo (predominantemente para videogames) levou ao desenvolvimento de Unidades de processamento gráfico (GPUs), que contém centenas de "núcleos" para operações altamente concorrentes. Tais GPUs são agora muito acessíveis. Os quadros de alto nível, como o CUDA da Nvidia, levaram a uma adoção generalizada na academia e nas finanças.


Esse hardware de GPU geralmente é apenas adequado para o aspecto de pesquisa de financiamento quantitativo, enquanto que outros equipamentos mais especializados (incluindo matrizes de portas programáveis ​​em campo - FPGAs) são usados ​​para (U) HFT. Atualmente, a maioria dos langauges modernos suporta um grau de concorrência / multithreading. Assim, é direto otimizar um backtester, pois todos os cálculos são geralmente independentes dos outros.


O dimensionamento em engenharia e operações de software refere-se à capacidade do sistema de lidar consistentemente com o aumento de cargas sob a forma de solicitações maiores, maior uso do processador e maior alocação de memória. Na negociação algorítmica, uma estratégia pode escalar se pode aceitar quantidades maiores de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação escala se pode suportar maiores volumes de comércio e latência aumentada, sem bloqueio de estrangulamento.


Enquanto os sistemas devem ser projetados para dimensionar, muitas vezes é difícil prever de antemão, onde um gargalo irá ocorrer. O registro, o teste, o perfil e o monitoramento rigorosos ajudarão grandemente em permitir que um sistema seja dimensionado. As próprias línguas são muitas vezes descritas como "inesquecíveis". Isso geralmente é o resultado de uma informação errônea, e não de um fato difícil. É a pilha de tecnologia total que deve ser verificada quanto à escalabilidade, e não ao idioma. Claramente, certas línguas têm maior desempenho do que outras em casos de uso específicos, mas um idioma nunca é "melhor" do que outro em todos os sentidos.


Um meio de gerenciar a escala é separar as preocupações, como afirmado acima. A fim de introduzir ainda a capacidade de lidar com "picos" no sistema (ou seja, uma volatilidade súbita que desencadeia uma série de trades), é útil criar uma "arquitetura de filas de mensagens". Isso simplesmente significa colocar um sistema de fila de mensagens entre os componentes para que as ordens sejam "empilhadas" se um determinado componente não conseguir processar muitos pedidos.


Em vez de pedidos de perda, eles simplesmente são mantidos em uma pilha até que a mensagem seja tratada. Isso é particularmente útil para enviar trocas para um mecanismo de execução. Se o motor está sofrendo em latência intensa, ele irá fazer backup de trades. Uma fila entre o gerador de sinal comercial e a API de execução aliviará essa questão à custa de uma possível destruição comercial. Um bem respeitado corretor de fila de mensagens de código aberto é RabbitMQ.


Hardware e sistemas operacionais.


O hardware que executa sua estratégia pode ter um impacto significativo na rentabilidade do seu algoritmo. Esta não é uma questão restrita aos comerciantes de alta freqüência. Uma má escolha em hardware e sistema operacional pode levar a uma falha na máquina ou reiniciar no momento mais inoportuno. Assim, é necessário considerar onde sua candidatura irá residir. A escolha é geralmente entre uma máquina de mesa pessoal, um servidor remoto, um provedor de "nuvem" ou um servidor co-localizado em troca.


As máquinas de mesa são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis, como o Windows 7/8, o Mac OSX eo Ubuntu. Os sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente irão requerer reinicialização / remendo (e muitas vezes no pior dos tempos!). Eles também usam mais recursos computacionais pela virtude de exigir uma interface gráfica do usuário (GUI).


Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar à conectividade com a internet e aos problemas de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser comprada pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.


Um servidor dedicado ou uma máquina baseada em nuvem, muitas vezes mais caro do que uma opção de desktop, permite uma infra-estrutura de redundância mais significativa, como backups automatizados de dados, a capacidade de garantir de forma mais direta o tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar recursos de logon remoto do sistema operacional.


No Windows, isto é geralmente através do GUI Remote Desktop Protocol (RDP). Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infraestrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente faz com que as ferramentas de programação baseadas em GUI (como MatLab ou Excel) sejam inutilizáveis.


Um servidor co-localizado, como a frase é usada nos mercados de capitais, é simplesmente um servidor dedicado que se encontra dentro de uma troca para reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta freqüência, que dependem de baixa latência para gerar alfa.


O aspecto final para a escolha do hardware e a escolha da linguagem de programação é a independência da plataforma. Existe a necessidade do código para executar vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia implementada.


Resiliência e Testes.


Uma das melhores maneiras de perder muito dinheiro na negociação algorítmica é criar um sistema sem resiliência. Isso se refere à durabilidade do sistema quando sujeito a eventos raros, como falências de corretagem, volatilidade súbita em excesso, tempo de inatividade em toda a região para um provedor de servidor em nuvem ou a exclusão acidental de um banco de dados de negociação inteiro. Anos de lucro podem ser eliminados em segundos com uma arquitetura mal projetada. É absolutamente essencial considerar questões como debugging, testes, logging, backups, alta disponibilidade e monitoramento como componentes principais do seu sistema.


É provável que, em qualquer aplicativo de negociação quantitativo personalizado razoavelmente complicado, pelo menos 50% do tempo de desenvolvimento serão gastos em depuração, teste e manutenção.


Quase todas as linguagens de programação são enviadas com um depurador associado ou possuem alternativas de terceiros bem respeitadas. Em essência, um depurador permite a execução de um programa com inserção de pontos de interrupção arbitrários no caminho do código, que interrompe temporariamente a execução para investigar o estado do sistema. O principal benefício da depuração é que é possível investigar o comportamento do código antes de um ponto de falha conhecido.


A depuração é um componente essencial na caixa de ferramentas para analisar erros de programação. No entanto, eles são mais amplamente utilizados em linguagens compiladas, como C ++ ou Java, pois linguagens interpretadas, como Python, geralmente são mais fáceis de depurar devido a menos declarações LOC e menos verbosas. Apesar desta tendência, o Python é enviado com o pdb, que é uma ferramenta de depuração sofisticada. O Microsoft Visual C ++ IDE possui amplos utilitários de depuração de GUI, enquanto que para o programador de linha de comando Linux C ++, o depurador gdb existe.


O teste no desenvolvimento de software refere-se ao processo de aplicação de parâmetros e resultados conhecidos a funções, métodos e objetos específicos dentro de uma base de código, para simular o comportamento e avaliar múltiplos caminhos de código, ajudando a garantir que um sistema se comporta como deveria. Um paradigma mais recente é conhecido como Test Driven Development (TDD), onde o código de teste é desenvolvido contra uma interface especificada sem implementação. Antes da conclusão da base de código real, todos os testes falharão. À medida que o código é escrito para "preencher os espaços em branco", os testes eventualmente passarão, em que ponto o desenvolvimento deve cessar.


O TDD requer um design de especificação detalhado e abrangente, bem como um grau de disciplina saudável para realizar com sucesso. Em C ++, o Boost fornece uma estrutura de teste de unidade. Em Java, a biblioteca JUnit existe para cumprir a mesma finalidade. O Python também possui o módulo unittest como parte da biblioteca padrão. Muitas outras línguas possuem estruturas de teste de unidade e muitas vezes existem várias opções.


Em um ambiente de produção, o log sofisticado é absolutamente essencial. Logging refere-se ao processo de saída de mensagens, com vários graus de gravidade, em relação ao comportamento de execução de um sistema em um arquivo ou banco de dados plano. Os logs são uma "primeira linha de ataque" ao procurar o comportamento inesperado do tempo de execução do programa. Infelizmente, as falhas de um sistema de registro tendem a ser descobertas apenas após o fato! Tal como acontece com os backups discutidos abaixo, um sistema de registro deve ser devidamente considerado ANTES de projetar um sistema.


Tanto o Microsoft Windows quanto o Linux possuem uma extensa capacidade de registro do sistema e as linguagens de programação tendem a ser enviadas com bibliotecas de registro padrão que cobrem a maioria dos casos de uso. Muitas vezes, é aconselhável centralizar as informações de registro para analisá-lo em uma data posterior, uma vez que muitas vezes pode levar a idéias sobre como melhorar o desempenho ou a redução de erros, o que quase certamente terá um impacto positivo em seus retornos comerciais.


Embora o registro de um sistema forneça informações sobre o que aconteceu no passado, o monitoramento de um aplicativo fornecerá uma visão do que está acontecendo agora. Todos os aspectos do sistema devem ser considerados para o monitoramento. As métricas do nível do sistema, como o uso do disco, a memória disponível, a largura de banda da rede e o uso da CPU fornecem informações básicas de carga.


Métricas de negociação, como preços / volume anormais, levantamentos rápidos bruscos e exposição à conta para diferentes setores / mercados também devem ser monitorados continuamente. Além disso, deve ser instigado um sistema de limiar que forneça notificação quando certas métricas são violadas, elevando o método de notificação (e-mail, SMS, atendimento automatizado), dependendo da gravidade da métrica.


O monitoramento do sistema geralmente é o domínio do administrador do sistema ou do gerente de operações. No entanto, como um único desenvolvedor comercial, essas métricas devem ser estabelecidas como parte do design maior. Existem muitas soluções para monitoramento: proprietárias, hospedadas e de código aberto, que permitem uma ampla personalização de métricas para um caso de uso particular.


Os backups e a alta disponibilidade devem ser as principais preocupações de um sistema comercial. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!


It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?


Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.


Choosing a Language.


Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.


Type Systems.


When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.


For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.


Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.


Open Source or Proprietary?


One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.


The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.


Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.


There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.


MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.


Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.


The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.


Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.


Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.


While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.


I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.


Batteries Included?


The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.


C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).


Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.


Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!


An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.


Conclusão.


As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.


The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.


Apenas iniciando o comércio quantitativo?


3 razões para se inscrever para a lista de e-mails QuantStart:


1. Quant Trading Lessons.


Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!


2. Todo o conteúdo mais recente.


Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.


Real, dicas de negociação viáveis, sem tonturas.


O R Trader.


Usando R e ferramentas relacionadas em Finanças Quantitativas.


Archive for the ‘Trading Strategies’ Categoria.


Linking R to IQFeed with the QuantTools package.


IQFeed provides streaming data services and trading solutions that cover the Agricultural, Energy and Financial marketplace. It is a well known and recognized data feed provider geared toward retail users and small institutions. The subscription price starts at around $80/month.


Stanislav Kovalevsky has developed a package called QuantTools. It is an all in one package designed to enhance quantitative trading modelling. It allows to download and organize historical market data from multiple sources like Yahoo, Google, Finam, MOEX and IQFeed. The feature that interests me the most is the ability to link IQFeed to R. I’ve been using IQFeed for a few years and I’m happy with it (I’m not affiliated to the company in any way). Mais informações podem ser encontradas aqui. I’ve been looking for an integration within R for a while and here it is. As a result, after I ran a few tests, I moved my code that was still in Python into R. Just for completeness, here’s a link that explains how to download historical data from IQFeed using Python.


QuantTools offers four main functionalities: Get market data, Store/Retrieve market data, Plot time series data and Back testing.


First make sure that IQfeed is open. You can either download daily or intraday data. The below code downloads daily prices (Open, High, Low, Close) for SPY from 1st Jan 2017 to 1st June 2017.


The below code downloads intraday data from 1st May 2017 to 3rd May 2017.


Note the period parameter. It can take any of the following values: tick, 1min, 5min, 10min, 15min, 30min, hour, day, week, month, depending on the frequency you need.


QuantTools makes the process of managing and storing tick market data easy. You just setup storage parameters and you are ready to go. The parameters are where, since what date and which symbols you would like to be stored. Any time you can add more symbols and if they are not present in a storage, QuantTools tries to get the data from specified start date. The code below will save the data in the following directory: “C:/Users/Arnaud/Documents/Market Data/iqfeed”. There is one sub folder by instrument and the data is aved in. rds files.


You can also store data between specific dates. Replace the last line of code above with one of the below.


Now should you want to get back some of the data you stored, just run something like:


Note that only ticks are supported in local storage so period must be ‘tick’


QuantTools provides plot_ts function to plot time series data without weekend, holidays and overnight gaps. In the example below, I first retrieve the data stored above, then select the first 100 price observations and finally draw the chart.


Two things to notice: First spy is a data. table object hence the syntax above. To get a quick overview of data. table capabilities have a look at this excellent cheat sheet from DataCamp. Second the local parameter is TRUE as the data is retrieved from internal storage.


QuantTools allows to write your own trading strategy using its C++ API. I’m not going to elaborate on this as this is basically C++ code. You can refer to the Examples section on QuantTools website.


Overall I find the package extremely useful and well documented. The only missing bit is the live feed between R and IQFeed which will make the package a real end to end solution.


Como de costume, todos os comentários são bem-vindos.


BERT: a newcomer in the R Excel connection.


A few months ago a reader point me out this new way of connecting R and Excel. I don’t know for how long this has been around, but I never came across it and I’ve never seen any blog post or article about it. So I decided to write a post as the tool is really worth it and before anyone asks, I’m not related to the company in any way.


BERT stands for Basic Excel R Toolkit. It’s free (licensed under the GPL v2) and it has been developed by Structured Data LLC. At the time of writing the current version of BERT is 1.07. Mais informações podem ser encontradas aqui. From a more technical perspective, BERT is designed to support running R functions from Excel spreadsheet cells. In Excel terms, it’s for writing User-Defined Functions (UDFs) in R.


In this post I’m not going to show you how R and Excel interact via BERT. There are very good tutorials here, here and here. Instead I want to show you how I used BERT to build a “control tower” for my trading.


My trading signals are generated using a long list of R files but I need the flexibility of Excel to display results quickly and efficiently. As shown above BERT can do this for me but I also want to tailor the application to my needs. By combining the power of XML, VBA, R and BERT I can create a good looking yet powerful application in the form of an Excel file with minimum VBA code. Ultimately I have a single Excel file gathering all the necessary tasks to manage my portfolio: database update, signal generation, orders submission etc… My approach could be broken down in the 3 steps below:


Use XML to build user defined menus and buttons in an Excel file. The above menus and buttons are essentially calls to VBA functions. Those VBA functions are wrapup around R functions defined using BERT.


With this approach I can keep a clear distinction between the core of my code kept in R, SQL and Python and everything used to display and format results kept in Excel, VBA & XML. In the next sections I present the prerequisite to developed such an approach and a step by step guide that explains how BERT could be used for simply passing data from R to Excel with minimal VBA code.


1 & # 8211; Download and install BERT from this link . Once the installation has completed you should have a new Add-Ins menu in Excel with the buttons as shown below. This is how BERT materialized in Excel.


2 & # 8211; Download and install Custom UI editor : The Custom UI Editor allows to create user defined menus and buttons in Excel ribbon. A step by step procedure is available here.


1 & # 8211; R Code: The below R function is a very simple piece of code for illustration purposes only. It calculates and return the residuals from a linear regression. This is what we want to retrieve in Excel. Save this in a file called myRCode. R (any other name is fine) in a directory of your choice.


2 & # 8211; functions. R in BERT : From Excel select Add-Ins -> Home Directory and open the file called functions. R . In this file paste the following code. Make sure you insert the correct path.


This is just sourcing into BERT the R file you created above. Then save and close the file functions. R. Should you want to make any change to the R file created in step 1 you will have to reload it using the BERT button “Reload Startup File” from the Add-Ins menu in Excel.


3 & # 8211; In Excel: Create and save a file called myFile. xslm (any other name is fine). This is a macro-enabled file that you save in the directory of your choice. Once the file is saved close it.


4 & # 8211; Open the file created above in Custom UI editor : Once the file is open, paste the below code.


You should have something like this in the XML editor:


Essentially this piece of XML code creates an additional menu (RTrader), a new group (My Group) and a user defined button (New Button) in the Excel ribbon. Once you’re done, open myFile. xslm in Excel and close the Custom UI Editor. You should see something like this.


5 & ​​# 8211; Open VBA editor : In myFile. xlsm insert a new module. Paste the code below in the newly created module.


This erases previous results in the worksheet prior to coping new ones.


6 & # 8211; Click New Button : Now go back to the spreadsheet and in the RTrader menu click the “New Button” botão. You should see something like the below appearing.


The guide above is a very basic version of what can be achieved using BERT but it shows you how to combine the power of several specific tools to build your own custom application. From my perspective the interest of such an approach is the ability to glue together R and Excel obviously but also to include via XML (and batch) pieces of code from Python, SQL and more. This is exactly what I needed. Finally I would be curious to know if anyone has any experience with BERT?


Trading strategy: Making the most of the out of sample data.


When testing trading strategies a common approach is to divide the initial data set into in sample data: the part of the data designed to calibrate the model and out of sample data: the part of the data used to validate the calibration and ensure that the performance created in sample will be reflected in the real world. As a rule of thumb around 70% of the initial data can be used for calibration (i. e. in sample) and 30% for validation (i. e. out of sample). Then a comparison of the in and out of sample data help to decide whether the model is robust enough. This post aims at going a step further and provides a statistical method to decide whether the out of sample data is in line with what was created in sample.


In the chart below the blue area represents the out of sample performance for one of my strategies.


A simple visual inspection reveals a good fit between the in and out of sample performance but what degree of confidence do I have in this? At this stage not much and this is the issue. What is truly needed is a measure of similarity between the in and out of sample data sets. In statistical terms this could be translated as the likelihood that the in and out of sample performance figures coming from the same distribution. There is a non-parametric statistical test that does exactly this: the Kruskall-Wallis Test . A good definition of this test could be found on R-Tutor “A collection of data samples are independent if they come from unrelated populations and the samples do not affect each other. Using the Kruskal-Wallis Test , we can decide whether the population distributions are identical without assuming them to follow the normal distribution.” The added benefit of this test is not assuming a normal distribution.


It exists other tests of the same nature that could fit into that framework. The Mann-Whitney-Wilcoxon test or the Kolmogorov-Smirnov tests would perfectly suits the framework describes here however this is beyond the scope of this article to discuss the pros and cons of each of these tests. A good description along with R examples can be found here.


Here’s the code used to generate the chart above and the analysis:


In the example above the in sample period is longer than the out of sample period therefore I randomly created 1000 subsets of the in sample data each of them having the same length as the out of sample data. Then I tested each in sample subset against the out of sample data and I recorded the p-values. This process creates not a single p-value for the Kruskall-Wallis test but a distribution making the analysis more robust. In this example the mean of the p-values is well above zero (0.478) indicating that the null hypothesis should be accepted: there are strong evidences that the in and out of sample data is coming from the same distribution.


As usual what is presented in this post is a toy example that only scratches the surface of the problem and should be tailored to individual needs. However I think it proposes an interesting and rational statistical framework to evaluate out of sample results.


This post is inspired by the following two papers:


Vigier Alexandre, Chmil Swann (2007), “Effects of Various Optimization Functions on the Out of Sample Performance of Genetically Evolved Trading Strategies”, Forecasting Financial Markets Conference.


Vigier Alexandre, Chmil Swann (2018), « An optimization process to improve in/out of sample consistency, a Stock Market case», JP Morgan Cazenove Equity Quantitative Conference, London October 2018.


Introducing fidlr: FInancial Data LoadeR.


fidlr is an RStudio addin designed to simplify the financial data downloading process from various providers. This initial version is a wrapper around the getSymbols function in the quantmod package and only Yahoo, Google, FRED and Oanda are supported. I will probably add functionalities over time. As usual with those things just a kind reminder: “THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND…”


How to install and use fidlr?


You can get the addin/package from its Github repository here (I will register it on CRAN later on) Install the addin. There is an excellent tutorial to install RStudio Addins here. Once the addin is installed it should appear in the Addin menu. Just chose fidlr in the menu and a window as pictured below should appear. Choose a data provider from the the Source dropdown menu. Select a date range from the Date menu Enter the symbol you wish to download in the instrument text box. To download several symbols just enter the symbols separated by commas. Use the Radio buttons to choose whether you want to download the instrument in a csv file or in the global environment. The csv file will be saved in the working directory and there will be one csv file per instrument. Press Run to get the data or Close to close down the addin.


Error messages and warnings are handled by the underlying packages (quantmod and Shiny) and can be read from the console.


This is a very first version of the project so do not expect perfection but hopefully it will get better over time. Please report any comment, suggestion, bug etc… to: thertrader@gmail.


Maintaining a database of price files in R.


Doing quantitative research implies a lot of data crunching and one needs clean and reliable data to achieve this. What is really needed is clean data that is easily accessible (even without an internet connection). The most efficient way to do this for me has been to maintain a set of csv files. Obviously this process can be handled in many ways but I found very efficient and simple overtime to maintain a directory where I store and update csv files. I have one csv file per instrument and each file is named after the instrument it contains. The reason I do so is twofold: First, I don’t want to download (price) data from Yahoo, Google etc… every time I want to test a new idea but more importantly once I identified and fixed a problem, I don’t want to have to do it again the next time I need the same instrument. Simple yet very efficient so far. The process is summarized in the chart below.


In everything that follows, I assume that data is coming from Yahoo. The code will have to be amended for data from Google, Quandl etc… In addition I present the process of updating daily price data. The setup will be different for higher frequency data and other type of dataset (i. e. different from prices).


1 & # 8211; Initial data downloading (listOfInstruments. R & historicalData. R)


The file listOfInstruments. R is a file containing only the list of all instruments.


If an instrument isn’t part of my list (i. e. no csv file in my data folder) or if you do it for the very first time you have to download the initial historical data set. The example below downloads a set of ETFs daily prices from Yahoo Finance back to January 2000 and store the data in a csv file.


2 & # 8211; Update existing data (updateData. R)


The below code starts from existing files in the dedicated folder and updates all of them one after the other. I usually run this process everyday except when I’m on holiday. To add a new instrument, simply run step 1 above for this instrument alone.


3 & # 8211; Create a batch file (updateDailyPrices. bat)


Another important part of the job is creating a batch file that automates the updating process above (I’m a Windows user). This avoids opening R/RStudio and run the code from there. The code below is placed on a. bat file (the path has to be amended with the reader’s setup). Note that I added an output file (updateLog. txt) to track the execution.


The process above is extremely simple because it only describes how to update daily price data. I’ve been using this for a while and it has been working very smoothly for me so far. For more advanced data and/or higher frequencies, things can get much trickier.


Como de costume, todos os comentários são bem-vindos.


Factor Evaluation in Quantitative Portfolio Management.


When it comes to managing a portfolio of stocks versus a benchmark the problem is very different from defining an absolute return strategy. In the former one has to hold more stocks than in the later where no stocks at all can be held if there is not good enough opportunity. The reason for that is the tracking error . This is defined as the standard deviation of the portfolio return minus the benchmark return. The less stocks is held vs. a benchmark the higher the tracking error (e. g higher risk).


The analysis that follows is largely inspired by the book “Active Portfolio Management” by Grinold & Kahn. This is the bible for anyone interested in running a portfolio against a benchmark. I strongly encourage anyone with an interest in the topic to read the book from the beginning to the end. It’s very well written and lays the foundations of systematic active portfolio management (I have no affiliation to the editor or the authors).


Here we’re trying to rank as accurately as possible the stocks in the investment universe on a forward return basis. Many people came up with many tools and countless variant of those tools have been developed to achieve this. In this post I focus on two simple and widely used metrics: Information Coefficient (IC) and Quantiles Return (QR).


The IC gives an overview of the factor forecasting ability. More precisely, this is a measure of how well the factor ranks the stocks on a forward return basis. The IC is defined as the rank correlation ( ρ ) between the metric (e. g. factor) and the forward return. In statistical terms the rank correlation is a nonparametric measure of dependance between two variables. For a sample of size n , the n raw scores are converted to ranks , and ρ is computed from:


The horizon for the forward return has to be defined by the analyst and it’s a function of the strategy’s turnover and the alpha decay (this has been the subject of extensive research). Obviously ICs must be as high as possible in absolute terms.


For the keen reader, in the book by Grinold & Kahn a formula linking Information Ratio (IR) and IC is given: with breadth being the number of independent bets (trades). This formula is known as the fundamental law of active management . The problem is that often, defining breadth accurately is not as easy as it sounds.


In order to have a more accurate estimate of the factor predictive power it’s necessary to go a step further and group stocks by quantile of factor values then analyse the average forward return (or any other central tendency metric) of each of those quantiles. The usefulness of this tool is straightforward. A factor can have a good IC but its predictive power might be limited to a small number of stocks. This is not good as a portfolio manager will have to pick stocks within the entire universe in order to meet its tracking error constraint. Good quantiles return are characterised by a monotonous relationship between the individual quantiles and forward returns.


All the stocks in the S&P500 index (at the time of writing). Obviously there is a survival ship bias: the list of stocks in the index has changed significantly between the start and the end of the sample period, however it’s good enough for illustration purposes only.


The code below downloads individual stock prices in the S&P500 between Jan 2005 and today (it takes a while) and turns the raw prices into return over the last 12 months and the last month. The former is our factor, the latter will be used as the forward return measure.


Below is the code to compute Information Coefficient and Quantiles Return. Note that I used quintiles in this example but any other grouping method (terciles, deciles etc…) can be used. it really depends on the sample size, what you want to capture and wether you want to have a broad overview or focus on distribution tails. For estimating returns within each quintile, median has been used as the central tendency estimator. This measure is much less sensitive to outliers than arithmetic mean.


And finally the code to produce the Quantiles Return chart.


3 & # 8211; How to exploit the information above?


In the chart above Q1 is lowest past 12 months return and Q5 highest. There is an almost monotonic increase in the quantiles return between Q1 and Q5 which clearly indicates that stocks falling into Q5 outperform those falling into Q1 by about 1% per month. This is very significant and powerful for such a simple factor (not really a surprise though…). Therefore there are greater chances to beat the index by overweighting the stocks falling into Q5 and underweighting those falling into Q1 relative to the benchmark.


An IC of 0.0206 might not mean a great deal in itself but it’s significantly different from 0 and indicates a good predictive power of the past 12 months return overall. Formal significance tests can be evaluated but this is beyond the scope of this article.


The above framework is excellent for evaluating investments factor’s quality however there are a number of practical limitations that have to be addressed for real life implementation:


Rebalancing : In the description above, it’s assumed that at the end of each month the portfolio is fully rebalanced. This means all stocks falling in Q1 are underweight and all stocks falling in Q5 are overweight relative to the benchmark. This is not always possible for practical reasons: some stocks might be excluded from the investment universe, there are constraints on industry or sector weight, there are constraints on turnover etc… Transaction Costs : This has not be taken into account in the analysis above and this is a serious brake to real life implementation. Turnover considerations are usually implemented in real life in a form of penalty on factor quality. Transfer coefficient : This is an extension of the fundamental law of active management and it relaxes the assumption of Grinold’s model that managers face no constraints which preclude them from translating their investments insights directly into portfolio bets.


And finally, I’m amazed by what can be achieved in less than 80 lines of code with R…


Como de costume, todos os comentários são bem-vindos.


Risk as a “Survival Variable”


I come across a lot of strategies on the blogosphere some are interesting some are a complete waste of time but most share a common feature: people developing those strategies do their homework in term of analyzing the return but much less attention is paid to the risk side its random nature. I’ve seen comment like “a 25% drawdown in 2018 but excellent return overall”. Well my bet is that no one on earth will let you experience a 25% loss with their money (unless special agreements are in place). In the hedge fund world people have very low tolerance for drawdown. Generally, as a new trader in a hedge fund, assuming that you come with no reputation, you have very little time to prove yourself. You should make money from day 1 and keep on doing so for a few months before you gain a bit of credibility.


First let’s say you have a bad start and you lose money at the beginning. With a 10% drawdown you’re most certainly out but even with a 5% drawdown the chances of seeing your allocation reduced are very high. This has significant implications on your strategies. Let’s assume that if you lose 5% your allocation is divided by 2 and you come back to your initial allocation only when you passed the high water mark again (e. g. the drawdown comes back to 0). In the chart below I simulated the experiment with one of my strategies.


You start trading in 1st June 2003 and all goes well until 23rd Jul. 2003 where your drawdown curve hits the -5% threshold (**1**). Your allocation is cut by 50% and you don’t cross back the high water mark level until 05th Dec. 2003 (**3**). If you have kept the allocation unchanged, the high water mark level would have been crossed on 28th Oct. 2003 (**2**) and by the end of the year you would have made more money.


But let’s push the reasoning a bit further. Still on the chart above, assume you get really unlucky and you start trading toward mid-June 2003. You hit the 10% drawdown limit by the beginning of August and you’re most likely out of the game. You would have started in early August your allocation would not have been cut at all and you end up doing a good year in only 4 full months of trading. In those two examples nothing has changed but your starting date….


The trading success of any individual has some form of path dependency and there is not much you can do about it. However you can control the size of a strategy’s drawdown and this should be addressed with great care. A portfolio should be diversified in every possible dimension: asset classes, investment strategies, trading frequencies etc…. From that perspective risk is your “survival variable”. If managed properly you have a chance to stay in the game long enough to realise the potential of your strategy. Otherwise you won’t be there next month to see what happens.


Como de costume, todos os comentários são bem-vindos.


A Simple Shiny App for Monitoring Trading Strategies – Parte II.


This is a follow up on my previous post “A Simple Shiny App for Monitoring Trading Strategies“. I added a few improvements that make the app a bit better (at least for me!). Below is the list of new features :


A sample. csv file (the one that contains the raw data) A “EndDate” drop down box allowing to specify the end of the period. A “Risk” page containing a VaR analysis and a chart of worst performance over various horizons A “How To” page explaining how to use and tailor the app to individual needs.


I also made the app totally self contained. It is now available as a stand alone product and there is no need to have R/RStudio installed on your computer to run it. It can be downloaded from the R Trader Google drive account. This version of the app runs using portable R and portable Chrome. For the keen reader, this link explains in full details how to package a Shiny app into a desktop app (Windows only for now).


1 & # 8211; How to install & run the app on your computer.


Create a specific folder Unzip the contain of the. zip file onto that new folder. Change the paths in the runShinyApp file to match your setings To run the app, you just have launch the run. vbs file. I also included an icon (RTraderTradingApp. ico) should you want to create a shortcut on your desktop.


ui. R: controls the layout and appearance of the app server. R: contains the instructions needed to build the app. You can load as much strategies as you want as long as the corresponding csv file has the right format (see below). shinyStrategyGeneral. R: loads the required packages and launches the app.


3 & # 8211; How to add a trading strategy?


Create the corresponding. csv file in the right directory Create a new input in the data reactive function (within the server. R file) Add an extra element to the choice parameter in the first selectInput in the sidebarPanel (within the ui. R file). The element’s name should match the name of the new input above.


Remove the input in the data reactive function corresponding to the strategy you want to remove (within the server. R file) Remove the element in the choice parameter in the first selectInput in the sidebarPanel corresponding to the strategy you want to remove (within the ui. R file).


Please feel free to get in touch should you have any suggestion.


A Simple Shiny App for Monitoring Trading Strategies.


In a previous post I showed how to use R, Knitr and LaTeX to build a template strategy report. This post goes a step further by making the analysis interactive. Besides the interactivity, the Shiny App also solves two problems :


I can now access all my trading strategies from a single point regardless of the instrument traded. Coupled with the Shiny interactivity, it allows easier comparison. I can focus on a specific time period.


The code used in this post is available on a Gist/Github repository. There are essentially 3 files.


ui. R : controls the layout and appearance of the app. server. R : contains the instructions needed to build the app. It loads the data and format it. There is one csv file per strategy each containing at least two columns: date and return with the following format: (“2018-12-22″,”0.04%” ). You can load as much strategies as you want as long as they have the right format. shinyStrategyG eneral. R : loads the required packages and launches the app.


This app is probably far from perfect and I will certainly improve it in the future. Feel free to get in touch should you have any suggestion.


A big thank you to the RStudio/Shiny team for such a great tool.


Usando Algoritmos Genéticos em Negociação Quantitativa.


A questão que sempre deve ser feita ao usar indicadores técnicos é o que seria um critério objetivo para selecionar os parâmetros dos indicadores (por exemplo, por que usar um RSI de 14 dias em vez de 15 ou 20 dias?). Os algoritmos genéticos (GA) são ferramentas adequadas para responder a essa pergunta. Nesta publicação, eu mostro como configurar o problema em R. Antes de prosseguir o lembrete habitual: O que eu apresento nesta publicação é apenas um exemplo de brinquedo e não um convite para investir. Também não é uma estratégia concluída, mas uma idéia de pesquisa que precisa ser pesquisada, desenvolvida e adaptada às necessidades individuais.


O que são algoritmos genéticos?


A melhor descrição do GA que encontrei vem da Cybernatic Trading, um livro de Murray A. Ruggiero. Algoritmos genéticos foram inventados por John Holland em meados de 1970 para resolver problemas difíceis de otimização. Este método usa a seleção natural, a sobrevivência do mais forte # 8221 ;. O processo geral segue os passos abaixo:


Codifique o problema nos cromossomos Usando a codificação, desenvolva uma função de aptidão para uso na avaliação do valor de cada cromossomo na resolução de um determinado problema. Inicialize uma população de cromossomos. Avalie cada cromossomo na população. Crie novos cromossomos acoplando dois cromossomos. Isso é feito por muting e recombinação de dois pais para formar dois filhos (os pais são selecionados aleatoriamente, mas tendenciosos por sua aptidão) Avalie o novo cromossomo Exclua um membro da população que seja menos adequado do que o novo cromossomo e insira o novo cromossomo na população . Se o critério de parada for atingido (número máximo de gerações, o critério de aptidão é bom o suficiente e # 8230;), então, retorne o melhor cromossomo, alternativamente, vá para o passo 4.


A partir de uma perspectiva comercial, a GA é muito útil porque são boas em lidar com problemas altamente não-lineares. No entanto, eles exibem algumas características desagradáveis ​​que merecem destaque:


Sobreposição: Este é o principal problema e é para o analista configurar o problema de forma a minimizar esse risco. Tempo de computação: se o problema não for definido corretamente, pode ser extremamente longo para alcançar uma solução decente e a complexidade aumenta exponencialmente com o número de variáveis. Daí a necessidade de selecionar cuidadosamente os parâmetros.


Existem vários pacotes R que lidam com GA, eu escolhi usar o mais comum: rgenoud.


Os preços de fechamento diários para a maioria dos ETFs líquidos de finanças do Yahoo voltam a janeiro de 2000. O período de amostragem vai de janeiro de 2000 a dezembro de 2018. O período fora da amostra começa em janeiro de 2018.


A lógica é a seguinte: a função de aptidão é otimizada durante o período de amostra para obter um conjunto de parâmetros ótimos para os indicadores técnicos selecionados. O desempenho desses indicadores é então avaliado no período fora da amostra. Mas, antes disso, os indicadores técnicos devem ser selecionados.


O mercado de ações exibe duas características principais que são familiares para qualquer pessoa com alguma experiência comercial. Momento a longo prazo e reversão de curto prazo. Essas características podem ser traduzidas em termos de indicadores técnicos por: médias móveis cruzadas e RSI. Isso representa um conjunto de 4 parâmetros: períodos de retorno para médias móveis a longo e curto prazo, período de retorno para RSI e RSI. Os conjuntos de parâmetros são os cromossomos. O outro elemento-chave é a função de fitness. Podemos querer usar algo como: retorno máximo ou taxa Sharpe ou redução média mínima. No que se segue, escolhi maximizar a proporção de Sharpe.


A implementação do R é um conjunto de 3 funções:


fitnessFunction: define a função de fitness (por exemplo, taxa máxima de Sharpe) para ser usado no comércio de motores GA: estatísticas de negociação para os períodos de entrada e saída de amostra para fins de comparação genoud: o mecanismo GA do pacote rgenoud.


A função genoud é bastante complexa, mas eu não vou explicar o que cada parâmetro significa que eu quero manter esta publicação curta (e a documentação é realmente boa).


Na tabela abaixo, apresento para cada instrumento os parâmetros ótimos (período de retorno de RSI, limite de RSI, Média de Mudança de Curto Prazo e Média de Mudança de Longo Prazo), juntamente com as estatísticas de negociação dentro e fora da amostra.


Antes de comentar os resultados acima, quero explicar alguns pontos importantes. Para combinar a lógica definida acima, limitei os parâmetros para garantir que o período de look-back para a média móvel a longo prazo seja sempre mais longo que a média móvel mais curta. Eu também obriguei o otimizador a escolher apenas as soluções com mais de 50 trades no período de amostra (por exemplo, significância estatística).


Em geral, os resultados fora da amostra estão longe de serem impressionantes. Os retornos são baixos, mesmo que o número de negócios seja pequeno para tornar o resultado realmente significativo. No entanto, existe uma perda significativa de eficiência entre o período de entrada e saída do Japão (EWJ), o que muito provavelmente significa uma sobreposição.


Esta publicação destina-se a fornecer ao leitor as ferramentas para usar adequadamente o GA em uma estrutura de negociação quantitativa. Mais uma vez, é apenas um exemplo que precisa ser aperfeiçoado. Algumas possíveis melhorias a serem exploradas seriam:


Função de fitness: maximizar a relação Sharpe é muito simplista. A & # 8220; smarter & # 8221; A função certamente melhoraria o padrão de estatísticas comerciais de amostra: tentamos capturar um padrão muito direto. Uma pesquisa de padrão mais detalhada é definitivamente necessária. Otimização: há muitas maneiras de melhorar a forma como a otimização é conduzida. Isso melhoraria a velocidade de computação e a racionalidade dos resultados.


O código usado nesta publicação está disponível em um repositório Gist.

No comments:

Post a Comment